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Abstract.
The fifth Science run of LIGO (S5) has been concluded recently. The data collected over

two years of the run calls for a thorough analysis of the glitches seen in the gravitational wave
channels, as well as in the auxiliary and environmental channels. The study presents two new
techniques for cluster analysis of gravitational wave burst triggers. Traditional approaches
to clustering treats the problem as an optimization problemin an “open” search space of
clustering models. However, this can lead to problems with producing models that over-fit
or under-fit the data as the search is stuck on local minima. The new algorithms tackle local
minima by putting constraints in the search process. S-MEANS looks at similarity statistics
of burst triggers and builds up clusters that have the advantage of avoiding local minima.
Constrained Validation clustering tackles the problem by constraining the search in the space
of clustering models that are “non-splittable” models in which centroids of the left and right
child of a cluster (after splitting) are nearest to each other; the region of models that either
over-fit or under-fit data (i.e. “splittable” models) can therefore be effectively avoided when
assumptions about data are satisfied. These methods are demonstrated by using simulated
data. The results on simulated data are promising and the methods are expected to be useful
for LIGO S5 data analysis.

§ To whom correspondence should be addressed (lappoon.tang@utb.edu)
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1. Introduction

The fifth Science run of the Laser Interferometric Gravitational Wave Observatories (LIGO)
[1] came to an end in November 2007. This was the longest science run for the initial LIGO
that lasted for about two years. The accumulated data spanned not only the gravitational
wave (GW) channels in all the three interferometers (Hanford 4 kilometer (H1), Hanford 2
kilometer (H2) and Livingston 4 kilometer (L1)), but also several hundreds of auxiliary and
environmental channels. The integrated data volume crossed several hundred terabytes over
the duration of the run. Data are analyzed primarily with twogoals : to look for presence of
astrophysical signals in the data stream and to characterize the underlying noise. The second
of these two goals leads to research in the LIGO Scientific Collaboration’s (LSC) glitch group
and detector characterization groups [2].

One of the main problems of the detector characterization research is to understand the
source of the glitches seen in the GW channels. Typically, there are several thousands of
glitches that show up in the GW channels. It thus becomes a daunting task to identify all
of them manually. Several attempts are underway to analyze the glitches seen in the GW
channels during S5, e.g. Q-scan [3], Block-Normal event display [4], Multidimensional
classification analysis [5]. While partial success has beenachieved, a lot more still remains
desired.

Given the data size, use of data mining techniques is necessary in solving such problems.
In the recent past, multidimensional hierarchical classification analysis has been applied to
LIGO science data [6]. A wavelet-based event trigger generator (ETG) called the kleineWelle
algorithm [7] generates burst-like events in the LIGO data stream in all channels. These data
are stored in a protected database. Each trigger is characterized by GPS start and stop times, a
central time, central frequency (estimated from the wavelet scale), duration, weighted and un-
weighted energy values and a significance parameter that indicates how strong the signal is.
In the hierarchical classification analysis, metrics are constructed in the higher dimensional
space. If there areN independent parameters describing a signal, this results into N × N

metrics. Thus, to some extent, the accuracy of the result remains restricted by the number
of parameters that can be used. In case of the kleineWelle database, this figure amounts of
three - duration, central frequency and signal-to-noise ratio (snr) which is calculated from the
energy values. However, given the richness of the data and the wide repertoire of signals that
the GW channel is seen to contain, it is quite likely that a lotmore structure is present in
the multidimensional data space than revealed by the kleineWelle discreet database. Under
this perspective, development for S5 burst classification algorithms has been undertaken that
utilize not just the discreet parameters that the database offers, but rather the information
contained in the actual waveform of the burst signal [8].

This paper describes two algorithms that we have been developing to address needs for
data mining viz. S-MEANS and CV CLUSTER. The paper is organized as follows: Section 2
presents a short review of clustering algorithms, Sections3 and 4 describe the algorithms S-
MEANS and CV CLUSTER respectively, Section 5 shows the experimental results on simulated
data, and finally Section 6 gives the conclusions and future directions.
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2. Background on Clustering: Overview of K-means

Two clustering algorithms are most popularly used: hierarchical clustering and K-means.
Hierarchical clustering produces a nested hierarchy of clusters according to a pairwise
distance matrix of all the given points. The hierarchy givesintuitive visualization. A user does
not need to have prior knowledge on the data since no parameter excepts distance measure is
needed in hierarchical clustering. However, the distance matrix limits its application to small
data sets (both time complexity and space complexity areO(n2) or higher).

K-means[9] basically divides a given data set intoK clusters via an iterative refining
procedure. The procedure simply consists of three steps:

(i) initialize K centroids (ci, 1 ≤ i ≤ K) in the vector space.

(ii) Calculate the distances from every point to every centroid. Assign each point to groupi,
if ci is its closest centroid.

(iii) Update centroids. Each centroid is updated as the meanof all the points in its group.

(iv) If no point changed its membership or no centroid moved,exit, otherwise, go to step (ii).

The iterative procedure uses hill climbing to minimize the objective function:

J =

K∑

i

N∑

j

‖x
(i)
j − ci‖

2 (1)

where‖x(i)
j − ci‖

2 denotes Euclidean distance between pointxj to corresponding centroidci.
The Euclidean distance can be substituted by any distance measure.

Although the procedure will always terminate,K-means might converge to a local
minima. K-means is a simple algorithm that has been employed in many data mining or
data analysis tasks. However, one of the major problems ofK-means is that we do not know
the right number of clusters in advance. There is no existingtheoretical solution to find the
optimal number of clusters for any given data set. A common approach is to score the results
of multiple runs with differentK values according to a given criterion. The criterion might
incur new risk and parameter setting problems. We propose touse a similarity driven approach
to clustering that does not require specification ofK.

3. S-MEANS: Similarity Driven Clustering

The clustering problem we need to solve is:givenN data points, group them into clusters
such that within each cluster, all members have similarity≥ T, a user-defined threshold, with
the centroid. Similarity is a central notion in classification problem. The definition of cluster
also implies that the cluster members should have high similarity with each other. The most
popular Euclidean distance is a dissimilarity measure, which can be converted to a similarity
measure in Gaussian form:k(xi, yj) = exp(−γ‖xi−yj‖

2). This is also called the Radial Basis
Function (RBF kernel) in kernel machines. Kernel methods all use similarity measures instead
of dissimilarity. Similarity value is usually normalized to between 0 and 1; a confidence
threshold in [0, 1] also makes intuitive sense to users where0 represents the extreme that
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there is absolutely no similarity between two items and 1 theother extreme. There are a large
number of similarity measures available beside the RBF, such as correlationr, R-squared (the
square ofr) [10]. The similarity measure used by S-MEANS as the “default” is R-squared:

R2 =
{
∑n

i=1(xi − X)(yi − Y )}2

∑n

i=1(xi − X)2
∑n

i=1(yi − Y )2

whereX = (x1, X2, . . . , xn), andY = (y1, y2, . . . , yn) are two time series sequences.
However, any kernel function can be considered a similaritymeasure. Therefore, the

clustering problem, if defined in terms of similarity, is more user-friendly and will likely gain
more popularity due to the increasing amount of interests inkernel methods.

3.1. Algorithm description

S-MEANS starts fromK = 1 by default and a user can specify any startingK. Note that the
startingK is only an optional parameter in S-MEANS. First, same as inK-means, we initialize
K centroids. Second, calculate the similarities from every point to every centroid. Then, for
any point, if the highest similarity to centroidci is≥ T , group it to clusteri, otherwise, add it
to a new cluster (i.e. the(K +1)th cluster). Third, update each centroid, using the mean of all
member points by default. If one group becomes empty, removeits centroid and reduceK by
1. Repeat the second and third step until no new cluster is formed and none of the centroids
moves.

Note that S-MEANS is somewhat similar toK-means but with significant differences.
The major difference lies in the second step, which basically groups all the points to anew
cluster whose highest similarity toexistingcentroids is below the given threshold . InK-
means, all points must go to one of the existingK groups, which is unfair for some points
when their similarities to corresponding closest centroidare very low. This simple difference
makes big impact on the output of clusters. Also, we can letK starts from 1 and it will
converge to a value, which eliminates the need of specifyinga fixedK value. Also, there is a
minor difference in the third step. WhileK is incremented by 1 if a new cluster is formed, it is
decremented when some groups become empty. It is not unusualthat asK keeps increasing,
some old groups would disappear (as points in existing clusters could change membership as
new clusters are formed). This way,K will not go beyond control.

Like K-means, S-MEANS also requires a parameter. However, it is a lower bound on the
similarity of members in a cluster that is within 0% (membershave no similarity to centroid)
to 100% (members are identical to centroids). Such a parameter, that has semantics, is more
meaningful thanK. In a sense, one advantage of S-MEANS over K-means is the use of a
parameter that “explains”K by describing property of data from whichK is produced.

3.2. Time complexity and Termination

The termination of S-MEANS is guaranteed, because in the extreme case whenK equalsN
every point has 100% similarity to itself. Of course, the extreme case is not desired. The
result ofK depends on thresholdT . Intuitively, a highT produces more clusters. When
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T = 0, S-MEANS is reduced back toK-means. In this sense, S-MEANS is a generalization of
K-means.

If S-MEANS converges toK clusters, then time complexity isO(N ∗(1+2+ · · ·+K)) ≈

O(N ∗ K2/2). Recall that the time complexity ofK-means isO(NKL), whereL is the
number of iterations, strongly related toK and the distribution of data points. If using model
selection based method to try differentK and choose the best one, then the time complexity
is approximatelyO(N ∗ K2/2 ∗ L), assumingK value varies from 1 to desired number of
clusters. Besides avoiding the use of statistical tests (since both the number of data points
and the data dimensionality could be high), S-MEANS has advantages in low time complexity.
Readers are recommended to refer to [8] for more details.

4. Constrained Validation Clustering: The CV Cluster Algorithm

Another approach that tackles the problem of discovering relevant number of clusters is
explored here. The motivation is that if one can categorize regions in the search space of
clustering models, the search for a correct model can be constrained to specific regions.

4.1. Theoretical Intuition of the Algorithm

Before we proceed to describe the algorithm, let’s first present the intuition of the algorithm
that we call CV CLUSTER. Basically, the idea is that a “correct” cluster model is onesuch
that it has a set of homogeneous and unique clusters; each cluster in the model contains data
points generated by a single unique source, and no two clusters contain data points coming
from the same source.

The theoretical principle behind the CV CLUSTER is the observation that suppose one
has a set of data pointsD with the following property:
The centroid of cluster X is closer to that of Y than to that of Zif the data points in X and Y
are produced by the same source but those in Z are produced by adifferent source.
Then, any cluster modelM of D that consists of a set of homogeneous and unique clusters
will have the following property:
For every cluster C in M, if we split C into two equal partitions X and Y, then the centroids
of X and Y are closest to each other in M (i.e. C is a “non-splittable” cluster, and M is a
“non-splittable” model).

The property aboutD is basically saying that centroids of a pair of clusters whose content
is originated from the same source should be nearest to each other in a group of clusters. And,
if this is the case, it follows intuitively that the centroids of a pair of homogeneous clusters
(i.e. clusters whose content originated from the same source) should be nearest to each other
in a group of clusters.

Therefore, the theoretical principle implies that if the assumption aboutD holds and a
particular cluster modelH under consideration is not a non-splittable model, one can conclude
thatH does not consist of a set of homogeneous and unique clusters.Hence, it cannot be a
“correct” model forD.
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This theoretical underpinning allows one to devise a strategy for the search of a “correct”
clustering model given a set of dataD. Suppose that the assumption aboutD holds.
One can then narrow down the search space of clustering models to those that are non-
splittable because a “correct” model cannot possibly be found outside the region of non-
splittable models; any model discovered in the search process that is not non-splittable can be
rejected without further consideration. Hence, we call ourapproach Constrained Validation
CLUSTERing (CV CLUSTER).

However, it is unfortunately not the case that any non-splittable cluster model is a
“correct” model for a data setD that satisfies the assumption. For example, any cluster model
with only one cluster (i.e. the entire data set) is always trivially non-splittable but such a
model cannot be correct for a data set with two or more real clusters. In other words, one still
needs to provide a mechanism for determining if a cluster discovered in the search process is
homogeneous and unique.

If a cluster modelM consists of only unique clusters, to check if a particular cluster
C ∈ M is unique and homogeneous, obviously one only needs to checkif C is homogeneous.
A clusterC is homogeneous if and only if its two equal partitionsCx andCy (i.e. Cx∪Cy = C,
Cx ∩ Cy = ∅) contain data points produced by the same source. Hence, to check if a cluster
C ∈ M is homogeneous, one can compare the content ofCx to that ofCy to see if they may
be produced by the same source.

To check if two clustersX andY contain data points produced by the same source, for
now, we use a heuristic test:
If |avg-radius(X) − avg-radius(Y )| < δ, thenX andY are produced by the same source
whereavg-radius(C) =

P

x∈C
d(x,mean(C))

|C|
, d is the Euclidean distance, andδ = 10−n for some

n ≥ 0.
Our assumption is that if two clustersX andY are produced by the same source, the

sizes of the spheresX andY should be similar (and thus so are their radii). Hence, if the
gap between the radii of two clusters are “large”, they wouldlikely be produced by different
sources. In that case, the clusterC = X ∪ Y is therefore not homogeneous. Otherwise,C

is considered homogeneous. On the other hand, ifC is not a non-splittable cluster,C is also
not homogeneous assuming that the data setD satisfies the property mentioned above. Due
to limitation in space, the proof for this theorem is left out.

How do we know ifM consists of only unique clusters? We can ensure thatM has
only unique clusters if we choose only non-homogeneous clusters for splitting as non-unique
clusters (i.e. clusters having data points produced by the same source) are only produced in
the process by splitting a cluster that is already homogeneous. Ideally, each cluster is really
unique and homogeneous. However, in practice, it is arguably acceptable that one only needs
to ensure that a majority of the data points in a cluster are produced by the same source for
that cluster to be considered practically homogeneous. Similarly, if a cluster contains very
few data points produced by the same source as those contained in a different cluster, it can
be considered practically unique.

The easiest way to think ofδ is to treat it as a specification of the number of digits
beyond the decimal point for which two numbers are required to be the same for them to be
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considered “equal”. For example, ifδ = 0.1, then a radius of 34.4xyz... and one of 34.4abc...
are considered the same in size because they do not differ up to the first digit beyond the
decimal point. A parameter is also used here, however, it is aspecification of the level
of precision required by a user for two clusters to be considered homogeneous. Therefore,
although the system involves a parameter (likeK-means), it is one such that a meaning (in
this case, precision in numerical difference) can be attributed.

4.2. Description of the CV Cluster Algorithm

CV CLUSTER starts with one cluster (the entire set of data). It checks ifall the clusters
in the existing modelM are homogeneous using the homogeneity test described above. If
so, it terminates and returnsM . Otherwise, the non homogeneous cluster whose splitting
produces the child model that best optimizes the objective function in Equation (1) is chosen
for splitting to produce a refinement of the existing model. If a model that is not “non-
splittable” is generated in the process, it is rejected. This process repeats until a model with
only unique and homogeneous clusters is found or the maximumnumber of clusters allowed
has been reached.

5. Experiments on Mining Simulated LIGO Data

The artificial data set used in our experiments on mining simulated LIGO data has 20020
time series with a dimensionality of 1024. It was produced byPhysics experimentalists. Each
sequence is first generated by a single Gaussian modulated sinusoid signal. The amplitude
is scaled such that the matched filtering signal to noise ratio (SNR) is 1 in white Gaussian
noise with zero mean and unit variance‖. Then, a single Gaussian pulse is added to the
signal in random position. The pulse amplitude is also scaled with SNR=1 in white Gaussian
noise. Fig. 1 shows the typical shape of the each cluster. Thesimulated time series is a close
representation of the actual triggers in Gravitational-wave Astronomy time series.

Although Gaussian process is used here, the possible clusters inside the data sets do not
follow Gaussian distribution. As discussed in the introduction, GW events do not follow any
known statistical distribution.

5.1. Results ofS-MEANS

We applied S-MEANS to mine compact clusters in the data set of simulated LIGO time series.
As S-MEANS could sometimes return a model with a cluster having only onemember, we
restart S-MEANS for a maximum number of times (100) if this happened. In addition, the
upper bound on number of clusters allowed in a model is decremented by one each time it
is restarted; the search space is progressively constrained in order to introduce a sufficient
amount of bias in the search at some point so that S-MEANS can find a model that is small

‖ White noise is used in the simulation data here as this was thefirst set of simulations that has been performed
and our main goal was to understand the performance of the newalgorithms in classifying burst triggers. More
realistic noise models will be used in all future simulations.



Cluster Analysis of Simulated Gravitational Wave Triggers 8

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e1

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e2

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e3

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e4

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e5

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e6

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e7

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e8

Figure 1: Samples of simulated Gravitational-wave time series.

Table 1: Number of clusters, average number of iterations, number of restart, execution time,
average similarity change as similarity thresholdT increases.

ThresholdT 0.1 0.2 0.3 0.4 0.5 0.6
Number of clusters 10 11 13 60 96 97

Avg no. of iterations 54.00 15.00 17.03 89.43 104.4 106.25
Number of restart 0 1 28 39 4 3

Execution time (secs) 55.42 38.53 550.22 2596.99 355.66 237.24
Average similarity 0.56 0.58 0.63 0.65 0.66 0.67

enough to not overfit the data. Under this set up, S-MEANS was able to discover models
without clusters having only one member. S-MEANS was allowed to start with five random
initial centroids to facilitate the process of randomized restart. At the end, if S-MEANS did
not find a model with clusters having more than one member in each, the model with the best
average similarity is selected. Otherwise, the first model without a cluster having only one
member is returned.

All the following experiments were performed in Matlab. Thesimulation is an example
of a typical clustering task that arises in LIGO data clusteranalysis and it also demonstrates
the application of S-MEANS. As a part of GW data analysis, clustering time series based on
“shapes” that can be matched by similarity measures is beingexperimented here. The simple
similarity measure R-squared was used in S-MEANS.

S-MEANS was run on the data within a range of threshold values; this allows us to track
its emerging behavior as the thresholdT increases. For each threshold, the number of clusters
found, the average number of iterations it took to discover the final model (i.e. total number of
iterations divided by number of restart), number of times a restart is necessary, CPU seconds
it took to find the final model, and average similarity of data points with respect to their
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corresponding centroids are reported. Results are summarized in Table 1.
Unlike what we expect, parameters related to computing resources needed to find a model

(e.g. number of restart, execution time) do not always increase with respect toK. The most
amount of computing resources seems to be needed at the “transition region” whereK makes
rapid jumps from small values to large values. For example, in our case here, this region
lies in [0.3, 0.4]. In the transition region, S-MEANS would create a lot of clusters with only
one member resulting in an explosion of number of clusters – whenT approaches a “critical
value”. This is evidenced by the increase in the number of restart whenT approaches 0.4.

WhenT is “sufficiently small”, it is “easy” to put an arbitrary datapoint into a cluster
because the criterion for membership is not strong. Likewise, whenT is “sufficiently large”
(so is the expectedK), it is also “easy” to put an arbitrary data point into a cluster because
the probability of membership increases withK. Thus, the most difficult time for S-MEANS

to put a data point into a cluster occurs at the point whenT is somewhere in between the two
extremes.

Since clusters with only one member are created when it is most difficult to put a data
point in any of the existing clusters, what is the implication for deciding on theK that is
“correct”? WhenK is greater than the “correct” value, the number of restart should drop
because probability of membership is larger. On the other hand, whenK is too small,T is
also less strong, and the number of restart should also drop.Thus, it follows that the “correct”
K should occur at a value ofT such that the number of restart is maximized – and this value
has to be in the “transition region”.

5.2. Results ofCV CLUSTER

We also applied CV CLUSTER to discover if compact and well separated clusters exist in
the simulated LIGO data. Since CV CLUSTER aims at discovering a model with unique and
homogeneous clusters, one needs not specifyK in advance for a given set of data although,
similar to S-MEANS, a parameterδ (upper bound on absolute radii difference between two
child clusters) that relates to the similarity of the sources of two clusters has to be specified.
Asavg-radius(C)≤ avg-radius(D) if C ⊆ D, the radii gap can range from 0 toavg-radius(D)
whereD is the entire set of data. However,δ was set to 1.0 in our experiment.

CV CLUSTER discovered the existence of twenty unique and homogeneous clusters in
the simulated LIGO data. We also compared the quality of the model discovered by CV
CLUSTER to that ofK-means,G-means, and S-MEANS. S-MEANS could sometimes produce
a cluster with only one data point due to algorithmic randomness (depending on the initial
seeding centroids). To avoid producing a trivial model, S-MEANS is allowed to restart if
such a cluster is produced.T was set to 0.35. The number of restart was 45.G-means
[11] is another clustering system that is capable of discovering the number of significant
clusters in a set of data. However, it employs the assumptionthat homogeneous clusters obey
a Gaussian distribution and thus a normality test such as theAnderson-Darling test is used
to check if a cluster is homogeneous. Unfortunately, there is no guarantee that two Gaussian
clusters cannot be produced by the same source.G-means could potentially overfit the data;
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Table 2: The performance of CV CLUSTER, K-means,G-means, and S-MEANS on clustering
simulated LIGO data

Metrics Systems CV CLUSTER K-means G-means S-MEANS

Number of clusters found 20 20 2882 55
K-means objective function 10939540.31 11380425.92 13136128.84 3244124.10

DB validation index 2.30 3.75 2.30 56.51

CV CLUSTER avoids this problem by not assuming that Gaussian clusters are produced by
different sources.K in K-means was set to 20 for a meaningful comparison.K-means
basically serves as a “baseline” for comparison in the experiment. TheK initial centroids
were selected using the seeding method in K-MEANS++ [12] to helpK-means overcome
local minima. To quantitatively measure model quality, we employed two standard metrics –
one is the objective function used byK-means and the other is the Davies-Bouldin (DB)
index [13] that aims at identifying clusters that are compact and well separated. It is a
cluster validation index commonly used in the clustering community for comparing model
qualities. More precisely, a small value of the DB index indicates that a model has clusters
that are compact and whose centers are far away from each other. Likewise, smallerK-means
objection function values are more optimal.

Overall, CV CLUSTER found the correct number of clusters while clusters found byS-
MEANS are the most compact. CV CLUSTER outperformed bothK-means andG-means in
optimizing theK-means objective function and it produced a model with the best DB index
value. S-MEANS produced a model that best optimized theK-means objective function;
each cluster in the model has the smallest total intra-cluster distance on average (and hence,
each cluster is very compact). According to experimentalists, G-means produced too many
clusters. The results can be found in Table 2.

6. Conclusions and future work

Two clustering algorithms have been presented, and appliedon mining simulated LIGO data.
Both were demonstrated to address problems with existing approaches such as hierarchial
andK-means clustering. Also, both clustering algorithms discovered existence of significant
clusters in the simulated LIGO data, which has been confirmedby Physics experimentalists.
Despite that there could be disagreement between S-MEANS and CV CLUSTER, clusters
produced by both algorithms are interesting to experimentalists for further examination; they
produce two independent views on the data. Perhaps the best way to use both clustering tools
is to treat all the clusters produced by either one as candidates from which experimentalists
can finalize to a “correct” list of clusters by tracing the clusters to their physical origins. One
future work is to apply both approaches on clustering simulated LIGO data generated by more
realistic noise models, and to use experimental results foralgorithmic improvement.
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