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Abstract.

The fifth Science run of LIGO (S5) has been concluded receftlg data collected over
two years of the run calls for a thorough analysis of the gécseen in the gravitational wave
channels, as well as in the auxiliary and environmental ocbkn The study presents two new
techniques for cluster analysis of gravitational wave btriggers. Traditional approaches
to clustering treats the problem as an optimization probileran “open” search space of
clustering models. However, this can lead to problems wittdpcing models that over-fit
or under-fit the data as the search is stuck on local minima. riHw algorithms tackle local
minima by putting constraints in the search processvE3NS looks at similarity statistics
of burst triggers and builds up clusters that have the adgendf avoiding local minima.
Constrained Validation clustering tackles the problem dystraining the search in the space
of clustering models that are “non-splittable” models inisthcentroids of the left and right
child of a cluster (after splitting) are nearest to each tttee region of models that either
over-fit or under-fit data (i.e. “splittable” models) cantd#®re be effectively avoided when
assumptions about data are satisfied. These methods arenstemted by using simulated
data. The results on simulated data are promising and thieotieire expected to be useful
for LIGO S5 data analysis.

§ To whom correspondence should be addressed (lappoon.tahg@u)
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1. Introduction

The fifth Science run of the Laser Interferometric Gravitasil Wave Observatories (LIGO)
[1] came to an end in November 2007. This was the longestseirm for the initial LIGO
that lasted for about two years. The accumulated data sdamoteonly the gravitational
wave (GW) channels in all the three interferometers (Hahfbkilometer (H1), Hanford 2
kilometer (H2) and Livingston 4 kilometer (L1)), but alsoseeal hundreds of auxiliary and
environmental channels. The integrated data volume adasseeral hundred terabytes over
the duration of the run. Data are analyzed primarily with tyaals : to look for presence of
astrophysical signals in the data stream and to charaetégre&zunderlying noise. The second
of these two goals leads to research in the LIGO ScientifitaBotation’s (LSC) glitch group
and detector characterization groups [2].

One of the main problems of the detector characterizatiseareh is to understand the
source of the glitches seen in the GW channels. Typicalbtettare several thousands of
glitches that show up in the GW channels. It thus becomes atidgutask to identify all
of them manually. Several attempts are underway to anahedlitches seen in the GW
channels during S5, e.g. Q-scan [3], Block-Normal evenpldis [4], Multidimensional
classification analysis [5]. While partial success has lzdneved, a lot more still remains
desired.

Given the data size, use of data mining techniques is neydaassolving such problems.
In the recent past, multidimensional hierarchical claszifon analysis has been applied to
LIGO science data [6]. A wavelet-based event trigger gene(&TG) called the kleineWelle
algorithm [7] generates burst-like events in the LIGO dateasn in all channels. These data
are stored in a protected database. Each trigger is charactby GPS start and stop times, a
central time, central frequency (estimated from the wa\sglale), duration, weighted and un-
weighted energy values and a significance parameter thiabied how strong the signal is.
In the hierarchical classification analysis, metrics anestmicted in the higher dimensional
space. If there ar&l independent parameters describing a signal, this resutisNi x N
metrics. Thus, to some extent, the accuracy of the resulairenrestricted by the number
of parameters that can be used. In case of the kleineWelddase, this figure amounts of
three - duration, central frequency and signal-to-noisie (anr) which is calculated from the
energy values. However, given the richness of the data anditlte repertoire of signals that
the GW channel is seen to contain, it is quite likely that anhatre structure is present in
the multidimensional data space than revealed by the Ri¢efle discreet database. Under
this perspective, development for S5 burst classificatigarahms has been undertaken that
utilize not just the discreet parameters that the datab#isespbut rather the information
contained in the actual waveform of the burst signal [8].

This paper describes two algorithms that we have been dewngldo address needs for
data mining viz. SMEANS and CV Q.USTER. The paper is organized as follows: Section 2
presents a short review of clustering algorithms, SectBasd 4 describe the algorithms S-
MEANS and CV Q.USTERrespectively, Section 5 shows the experimental resultgonlated
data, and finally Section 6 gives the conclusions and futieetions.
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2. Background on Clustering: Overview of K-means

Two clustering algorithms are most popularly used: hidraal clustering and K-means.
Hierarchical clustering produces a nested hierarchy o$tels according to a pairwise
distance matrix of all the given points. The hierarchy gimgsitive visualization. A user does
not need to have prior knowledge on the data since no parameatepts distance measure is
needed in hierarchical clustering. However, the distanagirlimits its application to small
data sets (both time complexity and space complexity di€?) or higher).

K-means[9] basically divides a given data set infaclusters via an iterative refining
procedure. The procedure simply consists of three steps:

(i) initialize K centroids (¢;, 1 < i < K) in the vector space.

(i) Calculate the distances from every point to every aadtrAssign each point to group
if ¢; is its closest centroid.

(iif) Update centroids. Each centroid is updated as the noéati the points in its group.
(iv) If no point changed its membership or no centroid mowedt, otherwise, go to step (ii).

The iterative procedure uses hill climbing to minimize tiogeative function:
K N ‘
J=3 >l —el? ()
i

Whereny) — ¢;||* denotes Euclidean distance between pojrtb corresponding centroid.
The Euclidean distance can be substituted by any distanasure

Although the procedure will always terminat&’-means might converge to a local
minima. K-means is a simple algorithm that has been employed in matayrdming or
data analysis tasks. However, one of the major problenis-afeans is that we do not know
the right number of clusters in advance. There is no exigtiegretical solution to find the
optimal number of clusters for any given data set. A comman@geh is to score the results
of multiple runs with different’ values according to a given criterion. The criterion might
incur new risk and parameter setting problems. We propaseda similarity driven approach
to clustering that does not require specificatiorkof

3. S-MEANS: Similarity Driven Clustering

The clustering problem we need to solve ggven N data points, group them into clusters
such that within each cluster, all members have simila¥ity, a user-defined threshold, with
the centroid Similarity is a central notion in classification problemhéerldefinition of cluster
also implies that the cluster members should have high aiityilwith each other. The most
popular Euclidean distance is a dissimilarity measureclvban be converted to a similarity
measure in Gaussian formh(x;, y;) = exp(—v|z;—y;||?). Thisis also called the Radial Basis
Function (RBF kernel) in kernel machines. Kernel methobtissa similarity measures instead
of dissimilarity. Similarity value is usually normalized between 0 and 1; a confidence
threshold in [0, 1] also makes intuitive sense to users whemepresents the extreme that
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there is absolutely no similarity between two items and lotiher extreme. There are a large
number of similarity measures available beside the RBF) agcorrelatiom, R-squared (the
square of-) [10]. The similarity measure used byN8=ANS as the “default” is R-squared:

R? — {2?21(932_— X)(yi — Y)}j
E?:l(xi - X)? E?:l(yi —Y)?
whereX = (21, Xo,...,x,), andY = (y1, 4o, ..., y,) are two time series sequences.
However, any kernel function can be considered a similangasure. Therefore, the
clustering problem, if defined in terms of similarity, is rearser-friendly and will likely gain
more popularity due to the increasing amount of intereskeinel methods.

3.1. Algorithm description

S-MEANS starts fromK = 1 by default and a user can specify any startitigNote that the
startingK is only an optional parameter in 8EANS. First, same as ik’-means, we initialize

K centroids. Second, calculate the similarities from eveariyito every centroid. Then, for
any point, if the highest similarity to centroiglis > 7', group it to clustei, otherwise, add it

to a new cluster (i.e. thei' + 1)th cluster). Third, update each centroid, using the mean of all
member points by default. If one group becomes empty, remeweentroid and reducg” by

1. Repeat the second and third step until no new cluster msgdrand none of the centroids
moves.

Note that SMEANS is somewhat similar td{-means but with significant differences.
The major difference lies in the second step, which basicatbups all the points to aew
cluster whose highest similarity &xistingcentroids is below the given threshold . I
means, all points must go to one of the existiiggroups, which is unfair for some points
when their similarities to corresponding closest centesilvery low. This simple difference
makes big impact on the output of clusters. Also, we canilestarts from 1 and it will
converge to a value, which eliminates the need of specifgifiged K value. Also, there is a
minor difference in the third step. Whil€ is incremented by 1 if a new cluster is formed, it is
decremented when some groups become empty. It is not unthstialsK” keeps increasing,
some old groups would disappear (as points in existingetastould change membership as
new clusters are formed). This way, will not go beyond control.

Like K-means, SYEANS also requires a parameter. However, it is a lower bound on the
similarity of members in a cluster that is within 0% (membease no similarity to centroid)
to 100% (members are identical to centroids). Such a paeanikat has semantics, is more
meaningful thank'. In a sense, one advantage ofMEANS over K-means is the use of a
parameter that “explainsk” by describing property of data from whidki is produced.

3.2. Time complexity and Termination

The termination of SYEANS is guaranteed, because in the extreme case whequalsN
every point has 100% similarity to itself. Of course, therewte case is not desired. The
result of K depends on threshold. Intuitively, a highT produces more clusters. When
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T = 0, S.MEANS is reduced back t& -means. In this sense, EANS is a generalization of
K-means.

If S-MEANS converges td¢ clusters, then time complexity @(N*(1+2+---+K)) ~
O(N * K?/2). Recall that the time complexity ak-means isO(NK L), whereL is the
number of iterations, strongly related £6 and the distribution of data points. If using model
selection based method to try differeiitand choose the best one, then the time complexity
is approximatelyO (N * K?2/2 % L), assumingK value varies from 1 to desired number of
clusters. Besides avoiding the use of statistical teste€¢sboth the number of data points
and the data dimensionality could be high)MBANS has advantages in low time complexity.
Readers are recommended to refer to [8] for more detalils.

4. Constrained Validation Clustering: The CV Cluster Algorithm

Another approach that tackles the problem of discoveringvamt number of clusters is
explored here. The motivation is that if one can categorzgons in the search space of
clustering models, the search for a correct model can bereamsd to specific regions.

4.1. Theoretical Intuition of the Algorithm

Before we proceed to describe the algorithm, let’s first gméshe intuition of the algorithm
that we call CV QUSTER. Basically, the idea is that a “correct” cluster model is aneh
that it has a set of homogeneous and unique clusters; eastiercin the model contains data
points generated by a single unique source, and no two cdustatain data points coming
from the same source.

The theoretical principle behind the CVLGSTER is the observation that suppose one
has a set of data poinf3 with the following property:

The centroid of cluster X is closer to that of Y than to that @f the data points in X and Y

are produced by the same source but those in Z are producediifieeent source.

Then, any cluster model/ of D that consists of a set of homogeneous and unique clusters
will have the following property:

For every cluster C in M, if we split C into two equal partit®X and Y, then the centroids

of X and Y are closest to each other in M (i.e. C is a “non-sphite” cluster, and M is a
“non-splittable” model).

The property aboub is basically saying that centroids of a pair of clusters vehmmntent
is originated from the same source should be nearest to ¢laehio a group of clusters. And,
if this is the case, it follows intuitively that the centreidf a pair of homogeneous clusters
(i.e. clusters whose content originated from the same spstwould be nearest to each other
in a group of clusters.

Therefore, the theoretical principle implies that if theswsption about) holds and a
particular cluster moddl under consideration is not a non-splittable model, one oanlade
that H does not consist of a set of homogeneous and unique clusterse, it cannot be a
“correct” model forD.
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This theoretical underpinning allows one to devise a gjsater the search of a “correct”
clustering model given a set of dafa. Suppose that the assumption abdutholds.
One can then narrow down the search space of clustering smx¢aléhose that are non-
splittable because a “correct” model cannot possibly bendoautside the region of non-
splittable models; any model discovered in the search groitet is not non-splittable can be
rejected without further consideration. Hence, we call approach Constrained Validation
CLUSTERIng (CV Q.USTER).

However, it is unfortunately not the case that any non4gtiie cluster model is a
“correct” model for a data s that satisfies the assumption. For example, any clusterimode
with only one cluster (i.e. the entire data set) is alwaydaaly non-splittable but such a
model cannot be correct for a data set with two or more reakets. In other words, one still
needs to provide a mechanism for determining if a clusterosisred in the search process is
homogeneous and unique.

If a cluster modelM consists of only unique clusters, to check if a particulaistar
C € M is unique and homogeneous, obviously one only needs to ¢hétis homogeneous.

A clusterC'is homogeneous if and only if its two equal partitiahisandC,, (i.e. C,UC, = C,
C. N C, = () contain data points produced by the same source. Hencketk if a cluster
C € M is homogeneous, one can compare the conteat,ab that ofC, to see if they may
be produced by the same source.

To check if two clustersy andY contain data points produced by the same source, for
now, we use a heuristic test:

If |avg-radiugX) — avg-radiugY’)| < ¢, thenX andY are produced by the same source
whereavg-radiugC) = =z<¢ d(TéTea"(C)), d is the Euclidean distance, and= 10~ for some
n > 0.

Our assumption is that if two clustef§ andY are produced by the same source, the
sizes of the sphere¥ andY should be similar (and thus so are their radii). Hence, if the
gap between the radii of two clusters are “large”, they wdiklely be produced by different
sources. In that case, the clustér= X U Y is therefore not homogeneous. OtherwiSe,
is considered homogeneous. On the other hard,if not a non-splittable clustet; is also
not homogeneous assuming that the dataseatisfies the property mentioned above. Due
to limitation in space, the proof for this theorem is left out

How do we know if M consists of only unique clusters? We can ensure tidtas
only unique clusters if we choose only hon-homogeneousasisifor splitting as non-unique
clusters (i.e. clusters having data points produced bydheessource) are only produced in
the process by splitting a cluster that is already homogenelaleally, each cluster is really
unique and homogeneous. However, in practice, it is argusddeptable that one only needs
to ensure that a majority of the data points in a cluster andyred by the same source for
that cluster to be considered practically homogeneous.l&@iy if a cluster contains very
few data points produced by the same source as those cahtaiaedifferent cluster, it can
be considered practically unique.

The easiest way to think af is to treat it as a specification of the number of digits
beyond the decimal point for which two numbers are requioelet the same for them to be
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considered “equal”. For example,dif= 0.1, then a radius of 34.4xyz... and one of 34.4abc...
are considered the same in size because they do not diffey tigetfirst digit beyond the
decimal point. A parameter is also used here, however, it spexification of the level
of precision required by a user for two clusters to be comsilomogeneous. Therefore,
although the system involves a parameter (likeaneans), it is one such that a meaning (in
this case, precision in numerical difference) can be aiteit.

4.2. Description of the CV Cluster Algorithm

CV CLUSTER starts with one cluster (the entire set of data). It checlkalithe clusters

in the existing model/ are homogeneous using the homogeneity test described.alfove
so, it terminates and returng. Otherwise, the non homogeneous cluster whose splitting
produces the child model that best optimizes the objectigetion in Equation (1) is chosen
for splitting to produce a refinement of the existing modei.a Imodel that is not “non-
splittable” is generated in the process, it is rejected s nocess repeats until a model with
only unique and homogeneous clusters is found or the maximunber of clusters allowed
has been reached.

5. Experiments on Mining Simulated L1GO Data

The artificial data set used in our experiments on mining Eted LIGO data has 20020
time series with a dimensionality of 1024. It was producedPhysics experimentalists. Each
sequence is first generated by a single Gaussian modulatesbgil signal. The amplitude
is scaled such that the matched filtering signal to noise (&NR) is 1 in white Gaussian
noise with zero mean and unit variange Then, a single Gaussian pulse is added to the
signal in random position. The pulse amplitude is also scaith SNR=1 in white Gaussian
noise. Fig. 1 shows the typical shape of the each clustersifhelated time series is a close
representation of the actual triggers in GravitationalkevAstronomy time series.

Although Gaussian process is used here, the possible rdusséde the data sets do not
follow Gaussian distribution. As discussed in the intragut GW events do not follow any
known statistical distribution.

5.1. Results o6-MEANS

We applied SMEANS to mine compact clusters in the data set of simulated LIG@ ##ries.
As S-MEANS could sometimes return a model with a cluster having only meenber, we
restart SMEANS for a maximum number of times (100) if this happened. In addjtthe
upper bound on number of clusters allowed in a model is demnézd by one each time it
is restarted; the search space is progressively congdramnerder to introduce a sufficient
amount of bias in the search at some point so thateE8Ns can find a model that is small

|| White noise is used in the simulation data here as this wafirthheet of simulations that has been performed
and our main goal was to understand the performance of thetggsithms in classifying burst triggers. More
realistic noise models will be used in all future simulaton
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Figure 1: Samples of simulated Gravitational-wave timéser

Table 1: Number of clusters, average number of iteratiomsiber of restart, execution time,
average similarity change as similarity threshdlihcreases.

Thresholdl’ 0.1 0.2 0.3 0.4 0.5 0.6
Number of clusters | 10 11 13 60 96 97
Avg no. of iterations | 54.00| 15.00| 17.03 | 89.43 | 104.4 | 106.25
Number of restart 0 1 28 39 4 3

Execution time (secs) 55.42 | 38.53| 550.22| 2596.99| 355.66| 237.24
Average similarity | 0.56 | 0.58 | 0.63 0.65 0.66 0.67

enough to not overfit the data. Under this set upyiisxNs was able to discover models
without clusters having only one member.M&EANS was allowed to start with five random
initial centroids to facilitate the process of randomizedtart. At the end, if S4EANS did
not find a model with clusters having more than one memberch,egae model with the best
average similarity is selected. Otherwise, the first mod#iaut a cluster having only one
member is returned.

All the following experiments were performed in Matlab. T¢ieulation is an example
of a typical clustering task that arises in LIGO data clustealysis and it also demonstrates
the application of SYEANS. As a part of GW data analysis, clustering time series based o
“shapes” that can be matched by similarity measures is i{pgrimented here. The simple
similarity measure R-squared was used iMSANS.

S-MEANS was run on the data within a range of threshold values; thosvalus to track
its emerging behavior as the thresh@ldhcreases. For each threshold, the number of clusters
found, the average number of iterations it took to discaveffinal model (i.e. total number of
iterations divided by number of restart), number of timesstart is necessary, CPU seconds
it took to find the final model, and average similarity of datanps with respect to their
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corresponding centroids are reported. Results are surmedan Table 1.

Unlike what we expect, parameters related to computingaress needed to find a model
(e.g. number of restart, execution time) do not always emeenith respect t&. The most
amount of computing resources seems to be needed at thsitiimamegion” wherel’ makes
rapid jumps from small values to large values. For examplegur case here, this region
lies in [0.3, 0.4]. In the transition region, 8EANS would create a lot of clusters with only
one member resulting in an explosion of number of clusterbienii” approaches a “critical
value”. This is evidenced by the increase in the number darewhen’” approaches 0.4.

WhenT is “sufficiently small”, it is “easy” to put an arbitrary dagsint into a cluster
because the criterion for membership is not strong. LikeywghenT is “sufficiently large”
(so is the expected), it is also “easy” to put an arbitrary data point into a cerdbecause
the probability of membership increases with Thus, the most difficult time for #EANS
to put a data point into a cluster occurs at the point whes somewhere in between the two
extremes.

Since clusters with only one member are created when it ig diffisult to put a data
point in any of the existing clusters, what is the implicatior deciding on theX that is
“correct”? WhenK is greater than the “correct” value, the number of restaoughdrop
because probability of membership is larger. On the othedhahenkK is too small, T is
also less strong, and the number of restart should also @ays, it follows that the “correct”
K should occur at a value @f such that the number of restart is maximized — and this value
has to be in the “transition region”.

5.2. Results o€V CLUSTER

We also applied CV CQUSTER to discover if compact and well separated clusters exist in
the simulated LIGO data. Since CVLGSTER aims at discovering a model with unique and
homogeneous clusters, one needs not spdcifp advance for a given set of data although,
similar to SMEANS, a parameted (upper bound on absolute radii difference between two
child clusters) that relates to the similarity of the sosroétwo clusters has to be specified.
Asavg-radius() < avg-radius) if C C D, the radii gap can range from Oawg-radius()
whereD is the entire set of data. Howevénvas set to 1.0 in our experiment.

CV CLUSTER discovered the existence of twenty unique and homogendosteis in
the simulated LIGO data. We also compared the quality of teeehdiscovered by CV
CLUSTERto that of K-means(7-means, and S#EANS. S-MEANS could sometimes produce
a cluster with only one data point due to algorithmic randessn(depending on the initial
seeding centroids). To avoid producing a trivial modely&ans is allowed to restart if
such a cluster is producedl” was set to 0.35. The number of restart was 45-means
[11] is another clustering system that is capable of disgogethe number of significant
clusters in a set of data. However, it employs the assumgharhomogeneous clusters obey
a Gaussian distribution and thus a normality test such agmtigerson-Darling test is used
to check if a cluster is homogeneous. Unfortunately, thereiguarantee that two Gaussian
clusters cannot be produced by the same souremeans could potentially overfit the data;
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Table 2: The performance of CVLOSTER, K-means(7-means, and $4EANS on clustering

simulated LIGO data

Metrics Systems CV CLUSTER K-means G-means S-MEANS
Number of clusters found 20 20 2882 55
K-means objective function 10939540.31| 11380425.92| 13136128.84 3244124.10
DB validation index 2.30 3.75 2.30 56.51

CV CLUSTER avoids this problem by not assuming that Gaussian clusterpraduced by
different sources.K in K-means was set to 20 for a meaningful comparisétmeans
basically serves as a “baseline” for comparison in the expmit. TheK initial centroids
were selected using the seeding method imkKaNs++ [12] to help K-means overcome
local minima. To quantitatively measure model quality, wepdoyed two standard metrics —
one is the objective function used y-means and the other is the Davies-Bouldin (DB)
index [13] that aims at identifying clusters that are contpad well separated. It is a
cluster validation index commonly used in the clusteringhowinity for comparing model
gualities. More precisely, a small value of the DB index aades that a model has clusters
that are compact and whose centers are far away from eaah bitkevise, smalled{-means
objection function values are more optimal.

Overall, CV Q.USTER found the correct number of clusters while clusters foun&by
MEANS are the most compact. CVLOSTER outperformed both{-means and--means in
optimizing the K-means objective function and it produced a model with tret B8 index
value. SMEANS produced a model that best optimized tRemeans objective function;
each cluster in the model has the smallest total intra-@tudistance on average (and hence,
each cluster is very compact). According to experimentl{s-means produced too many
clusters. The results can be found in Table 2.

6. Conclusions and future work

Two clustering algorithms have been presented, and apptiedining simulated LIGO data.
Both were demonstrated to address problems with existipgoaghes such as hierarchial
and K-means clustering. Also, both clustering algorithms digted existence of significant
clusters in the simulated LIGO data, which has been confiroyelehysics experimentalists.
Despite that there could be disagreement betweere&Ns and CV QUSTER, clusters
produced by both algorithms are interesting to experimistsgor further examination; they
produce two independent views on the data. Perhaps the bggbwse both clustering tools
is to treat all the clusters produced by either one as catetideom which experimentalists
can finalize to a “correct” list of clusters by tracing thestlers to their physical origins. One
future work is to apply both approaches on clustering sitedla|GO data generated by more
realistic noise models, and to use experimental resultalffmrithmic improvement.
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