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Abstract

The Dynamic Time Warping (DTW) is state-of-the-art
distance measure widely used in sequential pattern match-
ing and it outperforms Euclidean distance in most cases
because its matching is elastic and robust. It is tempt-
ing to substitute DTW distance for Euclidean distance in
the Gaussian RBF kernel and plug it into the state-of-the-
art classifier Support Vector Machines (SVMs) for sequence
classification. However, it is not straightforward that DTW
also outperforms Euclidean distance in kernel machines.
While counter-examples can be found to numerically prove
that DTW is not Positive Definite Symmetric (PDS) accept-
able by SVM, little is known why it can not be PDS theo-
retically. We analyze the DTW kernel and complete a the-
oretical proof via the connection between PDS kernel and
Reproducing Kernel Hilbert Space (RKHS). Our analysis
leads to a better understanding that all Hilbertian metrics
can be be converted to a PDS kernel in the Gaussian form,
while the reverse is not true. The proof can be extended
to conclude that elastic matching distance is not eligible to
construct PDS kernels (e.g., Edit distance). Experiments
were conducted to compare the RBF-kernel and DTW ker-
nel in SVM classifications and the results show that simple
Euclidean distance outperforms DTW in kernel machines.

1 Introduction

Sequential patterns are common with broad applications
in online handwriting recognition, speech recognition and
streaming data analysis. There are a large number of dis-
tance measures proposed from sequential pattern match-
ing [12, 13, 14]. Comprehensive applications have shown
that the Dynamic Time Warping (DTW) and even the sim-
ple Euclidean distance outperform most of other sophisti-
cated measures [16, 21, 27]. DTW provides elastic match-
ing of two sequences while Euclidean distance is brittle
since it only allows one-to-one point matching. It is widely

accepted that DTW is state-of-the-art sequence measure.
However, distance measures are not the entire story of a
classification method. A classifier implicitly relies on both
a distance measure and a classification strategy. Different
classification strategies lead to different performance, even
with the same distance measures. For example, the per-
formance of 1-Nearest Neighbor (1-NN) could be different
from that of K-Nearest Neighbor (K-NN) depending on the
data domain.

In the plain input space, it is well-known that DTW is
generally superior to Euclidean distance. However, in the
scenario of Kernel Machines, is it true that DTW outper-
forms Euclidean distance? The answer is not straightfor-
ward as in the 1-NN classification, because kernel functions
implicitly map input vectors to higher and even infinite di-
mensional feature space where the separability is greatly en-
hanced.

Kernel Machines, referred to as Support Vector Ma-
chines (SVMs), use the minimum structure risk as classi-
fication strategy and leave the distance measure flexible by
the kernel tricks. The kernel tricks of SVM enable it to
be a universal learning machine. For linear kernel, the im-
plicit distance measure is the Euclidean distance. For the
Gaussian RBF kernel, the distance is also Euclidean but in
Gaussian form. The performance of SVMs with linear ker-
nel and RBF kernel is usually superior to that of 1-NN even
with the same Euclidean distance measure. However, is it
true that SVM with RRF kernel outperforms 1-NN classifier
with DTW distance?

Since SVM is state-of-the-art classifier, it is a natu-
ral extension to plug sequence measures into kernel ma-
chines for sequence classification. A so-called Gaussian
DTW (GDTW) kernel was proposed for sequence classi-
fication with applications in online handwriting recogni-
tion and speech recognition [4, 24]. The kernel is defined
as k�(x, y) = exp(−D�(x,y)

σ2 ), where D�(·, ·) denotes the
DTW distance. Intuitively, the advantages of DTW can be
utilized: elastic and robust matching of sequences, toler-
ance of different length which are common in sequential



patterns. However, the time complexity for a single DTW
calculation is O(w ∗ n) where n is the length of sequence
and w is the width of band restriction. If DTW kernel is
used in SVM classification, the DTW distances between in-
put sequence and every support vector have to be computed
in the SVM testing phase. Therefore, the time complexity is
the first problem that DTW kernel has to face. Furthermore,
the more important concern is, is the DTW kernel a quali-
fied SVM kernel? If not, why? While counter-examples can
be found to prove that DTW kernel is not Positive Definite
Symmetric (PDS) numerically, little is known why DTW
can not be PDS theoretically.

The study in the paper is to address the concerns above.
The rest of this paper is organized as follows. In section 2,
commonly used sequence measures Lp norms and DTW are
briefly introduced. In section 3, kernel functions and DTW
in kernel machines are firstly described. Then, we analyze
DTW kernel and prove that it is not PDS theoretically. Ex-
tension on proof and related works will also be discussed.
In section 4, experimental results are reported in comparing
DTW and RBF in kernel classification. Finally, conclusion
remarks are summarized in section 5.

2 Sequence Measures and Dynamic Time
Warping

For sequence analysis, one of the core problems is how
to define (dis)similarity measures. Lp norms and DTW
are commonly used measures. Given two sequences x =
[x1, x2, · · · , xn] and y = [y1, y2, · · · , yn], Lp norm is de-
fined as Lp(x, y) = (

∑n
i=1 ‖xi − yi‖p) 1

p . It reduces to the
commonly used Euclidean norm when p = 2. L2 norm is
optimal in the Maximum Likelihood sense when measure-
ment errors are independent, identically distributed Gaus-
sian. Thus, it has been widely applied in sequence match-
ing and indexing [29]. Lp norms are fast to compute and
easy for indexing. However, they assumes one-to-one point
matching and thus are brittle in handling sequential pat-
terns whose elements are non-linearly misaligned. Dynamic
Time Warping has advantages over Lp norms in its elastic
and robust matching. DTW is a method to find an optimal
match between two given sequences (e.g. time series).

To compute the DTW distance Dι(x, y) with x =
[x1, x2, · · · , xn] and y = [y1, y2, · · · , ym], we can first con-
struct an n-by-mmatrix, as shown in Fig. 1. Then, we find a
path in the matrix which starts from cell (1, 1) to cell (n,m)
so that the average cumulative cost along the path is mini-
mized. If the path passes cell (i, j), then the cell (i, j) con-
tributes cost(xi, yj) to the cumulative cost. The cost func-
tion can be defined flexibly depending on the application,
typically, cost(xi, yj) = ‖xi−yi‖2. This path can be deter-
mined using the dynamic programming, because the recur-
sive equation holds: D�(i, j) = cost(xi, yj)+min{D�(i−
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Figure 1. The warping path determined by
DTW in the n-by-m matrix has the minimum
cumulative cost. The marked area is the
band restriction that path cannot go. The
path indicates the optimal alignment: (x1, y1),
(x2, y2), (x3, y2), · · · , (xn−1, ym−3), (xn−1, ym−2),
(xn−1, ym−1), (xn, ym).

1, j), D�(i− 1, j − 1), D�(i, j − 1)}.
The path may goes several cells horizontally along the x-

axis or vertically along the y-axis, which makes the match-
ing between the two sequences not strictly one-to-one but
one-to-many. The warping path implicitly stretches both
sequence x and y to same length and the cumulative cost is
the Euclidean distance of the the stretched sequences. The
stretching is indicated by the alignment path: if a point xi
in x corresponds to h points in y, then xi is implicitly du-
plicated h times, because the cumulative cost is summed up
by all the local costs of the points on the alignment path.
The stretching is same with sequence y. Therefore, we can
imagine there exists two ”stretching” functions for a single
DTW matching. Let ψyx denotes the stretching function of
x when matching with sequence y. And similarly, ψxy . Note
that both ψyx and ψxy map x and y to Lxy-dimensional Eu-
clidean space. Note that the dimension Lxy also depends
on x and y, since the warping path pertains to the matching.
Thus, D�(x, y) = ‖ψyx(x) − ψxy (y)‖2.

3 Kernels in Support Vector Machines

The training of SVMs is to solve a constrained quadratic
optimization on the kernel matrix K which is constructed
by computing the kernel function k between pairwise train-
ing samples, i.e, K(i, j) = k(vi, vj), where vi is the train-
ing vector (i = 1, 2, · · · , N ). Let us first recall the defini-
tion of kernels.

Definition 3.1. Let X be a non-empty set. A function k :



X ×X → � is a kernel on X if there exists a Hilbert space
H and a feature map φ : X → H such that for all x, y ∈ X ,
k(x, y) =< φ(x), φ(y) >. H is called a feature space of k.

The kernels implicitly map the vectors in the input space
to higher dimensional space where the dot products are
computed using the kernel functions directly. Gaussian
RBF kernel functions are among the most commonly used
kernels, which is defined as:

kσ,d(x, y) = exp(−
∑d

i=1 ‖xi − yi‖2

σ2
) (1)

Without loss of generality, we only consider real vector
x, y ∈ �d here. Note that we use width σ and Euclidean
dimension d in to denote the RBF kernel, because the ker-
nel is determined by the two parameters.

It is well known that the Gaussian function is a kernel
[2, 25]. Its mapping function φmaps n vectors v1, v2, ..., vn
to n-dimensional space. φ(v1), φ(v2), ..., φ(vn) are linearly
independent and thus they span an n-dimensional subspace
of Hilbert space. A Gaussian kernel is defined on a domain
of infinite cardinality (the size of set X has no restriction).
Therefore, it can map the vectors to a infinite dimensional
space [20].

However, only PDS kernels are admissible to the stan-
dard SVMs since the Mercer condition must be satisfied to
guarantee the optimal convergence of SVM training. With
PDS kernels, the kernel matrix is convex and thus the train-
ing of SVM can reach the optimal solution. Gaussian ker-
nels are typical PDS kernels [1] and was suggested to use in
standard SVM [10].

Definition 3.2. Let X be a non-empty set. A kernel func-
tion k : X×X → � is a Positive Definite Symmetric (PDS)
kernel onX if it is symmetric and

∑n
i,j=1 cicjk(vi, vj) ≥ 0

for all n ≥ 0, {v1, v2, ..., vn} ⊆ X and {c1, c2, ..., cn} ⊆
�.

Definition 3.3. Let X be a non-empty set. A kernel func-
tion k : X×X → � is a Negative Definite Symetric (NDS)
kernel onX if it is symmetric and

∑n
i,j=1 cicjk(vi, vj) ≤ 0

for all n ≥ 0, {v1, v2, ..., vn} ⊆ X and {c1, c2, ..., cn} ⊆ �
with

∑n
i=1 ci = 0.

A theorem clarifies the the relation between NDS and
PDS and provides a way to construct PDS from NDS: k is
NDS ⇔ exp(−tk) is a PDS for all t > 0[7]. Euclidean
distance is NDS, that it is why Gaussian RBF is PDS [15].

By Linear algebra, k is a PDS kernel if and only if the
kernel matrix K with K(i, j) = k(vi, vj) is symmetric and
all the eigenvalues of K are non-negative [6]. However, it
is difficult to analyze the eigenvalues of an arbitrary matrix
unless we numerically compute it [22]. Although counter-
examples can be found to prove some kernels are not PDS,
but only analytical method can discover why and how the
PDS conditions are not satisfied.

3.1 DTW in kernel

Provided the kernel tricks of SVM and robustness of
DTW, it is tempting to substitute DTW distance for the Eu-
clidean distance in the RBF kernel. The concern is whether
the defined kernel is a qualified kernel. It was claimed that
the DTW kernel is a PDS kernel [23]. However, we found
that the proof is incorrect. Let us review the proof, where
the DTW kernel is defined as:

k�(x, y) = exp(−D�(x, y)
σ2

) (2)

where k� denotes the DTW kernel function, andD� denotes
the DTW distance (we adjust some symbols for the sake of
description, readers are referred to the original article for the
details of the proof). SinceD� is equivalent to the Euclidean
distance of the stretched sequences, the authors stated that

k�(x, y) = exp(− ‖ψx(x)−ψy(y)‖2

σ2 ), where ψx and ψy are
the mapping functions implicitly used by DTW to stretch
the two sequences with optimal alignment. The authors
were aware of that the mapping depends on the particular
sequence. However, they failed to recognize that the map-
ping depends on both sequences, that is why we denote the
mapping function as ψyx instead of ψx to indicate the map-
ping on x when x is matched against y. Moreover, they ig-
nored that the RBF kernel is determined by both σ and the
dimension d. When x matches to y, the two are stretched
to length d. But when x matches to some other sequence
instead of y, they are usually stretched to some length dif-
ferent from d. Therefore, the proof in [23] is invalid.

Even the proof was misleading, it is believed that the
DTW kernel is not a PDS kernel since simple counterexam-
ples can be found [11]. However, no analytical work has
been done so far to prove that the DTW kernel is not a PDS
kernel and little is known why the DTW kernel can not be
PDS, to the best of our knowledge. One might intuitively
think the reason lies in that DTW is not metric (no triangle
relation). We will show that being a Hilbertian metric is suf-
ficient but not necessary condition to construct a Gaussian
kernel.

To complete a theoretical proof, we need to recall the
definition and property of of Reproducing Kernel Hilbert
Space (RKHS).

Definition 3.4. Let X be a non-empty set and H a Hilbert
function space over X . H consists of functions which map
X into �. The spaceH is called a RKHS overX if for ∀x ∈
X the Dirac delta functional δx : H → � is continuous,
where δx(f) = f(x), f ∈ H . A function k : X×X → � is
a reproducing kernel of H if we have k(., x) ∈ H , ∀x ∈ X
and the reproducing property f(x) =< f, k(., x) >, ∀f ∈
H .

Hilbert space is a generalized Euclidean space that is not
restricted to finite dimensions. RKHS is a Hilbert func-



tion space, i.e., the elements in RHHS are functions, while
regular Hilbert space consists of vectors. The reproduc-
ing kernels are kernels since φ : X → H defined by
φ(x) = k(., x) is a feature map of k. Given a kernel, it
is well known that the feature map and the feature space
are not uniquely determined. However, according to the
Moore-Aronszajn theorem [3], a PDS kernel uniquely de-
termines a RKHS and vice versa. We will start from this
point and prove that the DTW kernel is not a PDS kernel.

Theorem 3.1. Let X be the space of real-value sequences.
The function defined as (2) is not a PDS kernel function.

Proof. Suppose x, y, z are three arbitrary sequences in

X . We know that k�(x, y) = exp(− ‖ψy
x(x)−ψx

y (y)‖2

σ2 .
Since ψyx and ψxy stretch the two sequences to the same
length d, we can consider ψyx(x), ψ

x
y (y) ∈ �d. Thus,

kσ,d(ψyx(x), ψ
x
y (y)) = k�(x, y). For all σ ∈ �, d ∈ N ,

RBF kernel kσ,d is a reproducing kernel which uniquely
determines a RKHS. Let us denote the RKHS determined
by kσ,d as RKHSd. Similarly, for k�(x, z), x and z are
stretched to a d′-dimensional space. Thus, we have a corre-
sponding RBF kernel kσ,d′ which is the reproducing kernel
of RKHSd′ . There exist two cases in the relation between
RKHSd and RKHSd′ :

i)if d �= d′, then RKHSd is different from RKHSd′ be-
cause they are uniquely determined by kσ,d and kσ,d′ re-
spectively. On the otherside, if the k� is a PDS kernel,then
RKHSd=RKHSd′ . This leads to contradiction.

ii)if d = d′, then RKHSd=RKHSd′ . If k� is PDS then
there exist a unique RKHS over X reproduced by k�. Let
denote RKHSd as H�. Recall that for any reproducing ker-
nel k, the feature map between X and RKHS is φ(x) :=
k < ·, x > [25].

To match x and y using DTW, we have

k�(x, y) = kσ,d(ψyx(x), ψ
x
y (y)

=< kσ,d < ·, ψyx(x) >, kσ,d < ·, ψxy (y) >>
Thus, x is mapped to k� < ·, x >= kσ,d < ·, ψyx(x) > in
H�. However, when matching x and z using DTW, we have

k�(x, z) = kσ,d(ψzx(x), ψ
x
z (z)

=< kσ,d < ·, ψzx(x) >, kσ,d < ·, ψxz (z) >>
Which means x is mapped to k� < ·, x >= kσ,d <
·, ψzx(x) >. Therefore, kσ,d < ·, ψyx(x) > must be equiv-
alent to kσ,d < ·, ψzx(x) >. We substitute the latter to
k�(x, y) and get:

k�(x, y) =< kσ,d < ·, ψzx(x) >, kσ,d < ·, ψxy (y) >
= kσ,d(ψzx(x), ψ

x
y (y)

= exp(−‖ψzx(x) − ψxy (y)‖2

σ2
)

This means the DTW distance between x and y is ‖ψzx(x)−
ψxy (y)‖2, while real distance should be ‖ψyx(x) − ψxy (y)‖2

. The two are equal only under conditions: i) ψzx = ψyx,
or ii) there exist more than one warping paths in the cost
matrix between x and y. The condition obviously does not
hold in DTW matching, because x, y and z are arbitrarily
chosen from X and DTW finds the optimal matching path.
Therefore, ‖ψyx(x) − ψxy (y)‖2 �= ‖ψzx(x) − ψxy (y)‖2 also
leads to contradiction.

From the proof, we can see that the stretching functions
depend on the pair of sequences that are being matched,
which is the main reason that a unique RKHS can not be
found. On the other side, if some stretching functions map
all the vectors to the same metric space, the kernel can be
PDS. We can derive the following corollary.

Corollary 3.2. Let X be a non-empty finite set and ∀x ∈
X , function fx maps x to a d-dimensional metric space �d
associated with Hilbertian metric distance measureD, then
a PDS kernel function can be defined as:

kc(x, x′) = exp(−D
2(fx(x), fx′(x′))

σ2
), ∀x, x′ ∈ X (3)

Here we use fx and fx′ to indicate that the mapping func-
tion for each instance in the X can be different from other
functions, as long as they map the instances to the same
metric space. We also generalize the Euclidean distance to
any metric distance D. For any metric space (X,D), the
space is also a Hilbert space. There is a theorem stating
that a metric space (X,D) embeds in a Hilbert space ⇔
D2 is Negative Definite Symmetric (NDS) [2]. We also have

the theorem that D is NDS ⇔ exp(−D2(·,·)
σ2 ) is a PDS [7].

With the support of the two theorems, we can derive the
following proof.

Proof. Let Xf be the metric set mapped from X by
fx, ∀x ∈ X . Define a PDS kernel as kD(e, e′) =
exp(−D2(e,e)

σ2 ), ∀e, e′ ∈ Xf . Then, kD has a unique
RKHSD and the feature mapping is φD(e) := kD < ·, e >,
which means kD is PDS over Xf . We can define a feature
map forX as φc(x) = φD(fx(x) = φD · fx(x). Therefore,
the function space consists of φc(x) is a RKHS on X . So
kc is PDS over X .

The corollary indicates that it is safe to plug any metric
distance function to the Gaussian form to construct a PDS
kernel (in this case, we can let the function fx and fx′ map
vector to itself). fx and fx′ can be considered as a ”prepro-
cessing” functions. As long as the preprocessing functions
independently map the original data to a metric space where
metric function D is used as distance function, then kernel
in (3) is PDS suitable for SVM. For instance, in SVM clas-
sification, we usually preprocess components of the feature



vectors to some range, typically, [-1,1]. The preprocessing
is implicitly a mapping function that maps the original data
space to a new metric space. The corollary above guaran-
tees that the preprocessing does not cause violation of the
Mercer conditions because all the input feature vectors are
preprocessed to the same metric space.

The corollary also implies that Hilbertian metrics are
sufficient but not necessary to construction PDS kernels.
Some distance measures which does not obey triangle re-
lation can also construct a PDS kernel. For example, coef-
ficient of determination R2 can be used as a distance mea-
sure:

R2(x, y) =
[
∑n

i=1(xi − x)(yi − y)]2∑n
i=1(xi − x)2

∑n
i=1(yi − y)2

(4)

R2 (the squared correlation Pearson’s r) is the goodness-
of-fit for linear regression [28]. It is known that correlation
r and R2 does not satisfy the triangle inequality. But a ker-
nel defined as follows is PDS.

kR(x, y) = exp(tR2(x, y)), t > 0 (5)

Let ν(x) denotes the mean-deviation normalization,

ν(x) = (x − x)/
√

1
n

∑n
i=1(xi − x)2. It is not difficult to

show R2(x, y) = 2 − 2||υ(x) − υ(y)||2. Thus, kR(x, y) =
exp(2t − 2t||υ(x) − υ(y)||2) = exp(2t)exp(−2t||υ(x) −
υ(y)||2). Considering the υ as a preprocessing function, the
kR is PDS obviously according to the corollary.

3.2 Related Works

Like DTW, Edit distance is used in many application.
It finds the minimal cost to transforming one string into an-
other. It was first explicitly proved to be not NDS [7]. How-
ever, the proof is given basically by counter-examples in-
stead of theoretical analysis. Extending the proof on DTW
with trivial modification can conclude that the following
function can not be PDS:

ke(s, s′) = exp(−tDe(s, s′)) (6)

where, De denotes Edit distance, s and s′ are strings over
alphabet Σ. Edit distance also implicitly stretch two strings
to the same length and the stretching depend on the pair of
strings. Once the a pair strings are stretched to the same
vector space, the Hamming distance instead of Euclidean
distance is used. The Hamming distance is also metric. Due
to limitation of space, the proof is omitted here. From DTW
and Edit distances, we can see that elastic matching based
distances can not be converted to PDS. We suspect that elas-
tic matching is not even a kernel, let alone PDS kernel. Of
course, this is still any open problem.

Table 1. The datasets used on the experi-
ments

Datasets # of classes # of training sam-
ples

# of testing sam-
ples

Length

Gun-Point 2 50 150 150

ECG 2 100 100 96

Lighting2 2 60 61 637

Yoga 2 300 3000 426

Table 2. The classification results of the four
approaches

Datasets RBF-SVM DTW-SVM DTW-NN 1-NN

Gun-Point 0.96 (σ = 0.03, C = 50) 0.94(σ = 3, C = 20) 0.913 0.913

ECG 0.97 (σ = 0.1, C = 50) 0.83 (σ = 0.2, C = 30) 0.88 0.88

Lighting2 0.754 (σ = 0.001, C = 30) 0.737 (σ = 0.01, C = 30) 0.869 0.754

Yoga 0.854 (σ = 0.013, C = 90) 0.8 (σ = 2, C = 20) 0.854 0.83

4 Experiments

While DTW kernel is not PDS in general, the kernel
matrix could be positive definite given a training dataset
at hand (recall that the kernel is defined over non-empty
set X which can be of any size). So one might argue we
still can plug DTW distance to SVM for classification to
take advantages of DTW’s elastic matching. Our experi-
ments compared the performance of DTW kernel and RBF
kernel to see whether DTW still has advantages over Eu-
clidean distance in kernel machines. Four datasets were
used to conduct experiments. The four datasets, namely,
Gun-Point, Lightning-2, Yoga and ECG have been exten-
sively used in time series experiments [17]. Table 1 summa-
rizes the description of the datasets. The toolbox adopted
was the Matlab SVM routines[9] based on LIBSVM [5].
Programmes were written in Matlab to perform classifica-
tion implementing the following approaches: 1) SVM with
standard RBF kernel (RBF-SVM);2) SVM with DTW ker-
nel (DTW-SVM); 3)Nearest neighbor classifier with DTW
distance (DTW-NN); 4)1-nearest neighbor(1-NN). The ker-
nel parameters, σ and C, were determined by cross valida-
tion.

The classification results are summarized in Table 2. Ob-
viously, the RBF-SVM outperforms the DTW-SVM in all
datasets. Interestingly, the DTW-SVM is even beat by the
1-NN except in the Gun-Point dataset. In general, the RBF-
SVM achieves better performance than DTW- SVM , NN-
DTW and 1-NN (except in the Lighting2, the DTW-NN has
higher accuracy). Overall, the performance of the DTW-
SVM is the worst. So it can be seen that the DTW kernel is
not suited for SVM.

To further compare their generalization ability, we
recorded the ratios of the support vectors with respect to
the number of training samples in DTW-SVM and RBF-
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Figure 2. The percentages of support vectors
in RBF-SVM training and DTW-SVM training
on dataset Lighting2.

SVM. Figure 2 shows the percentage of the support vectors
for both RBF-SVM and DTW-SVM on the four datasets.
Lower percentage indicates lower generalization error, be-
cause the error is bounded by the ratio, though the bound is
loose [26]. On three of the four datasets except the Light-
ing2 dataset, the DTW-SVM training generates more sup-
port vectors than the RBF-SVM, which means lower gen-
eralization ability. This is consistent with the classification
results in Table 2.

5 Conclusions and future work

The DTW outperforms Euclidean distance in plain input
space but not in kernel machines. We theoretically prove
that the DTW kernel is not PDS and empirically show that
DTW kernel does not lead to good performance due to poor
generalization ability on a variety of datasets. Therefore,
although some elastic matching measures are promising in
plain input space, cautions must be taken when applying
these measures in kernel machines.

Our future work will try to find a way to analyze the
performance of DTW and other elastic measures in kernel
machines rather than via empirical experiments. A possi-
ble theoretical explanation of the the poor performance re-
mains in our future work. Also, it might be possible to force
the DTW to comply with the Mercer’s conditions by mod-
ifying the dynamic alignment calculation [8]. The String
Kernels [18, 19] are inspiring examples that allow dynamic
programming but still obey kernel conditions. We believe
this research direction will be fruitful.
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